Surjection operad and interval cuts
SimplicialSets.Surjection
— TypeSurjection{K}
Surjection{K}(u [; check = true]) where K
Surjection(u)
(surj::Surjection)(x::T) where T <: AbstractSimplex -> Linear{T}
The type Surjection{K}
represents elements of arity K
in the surjection operad.
The first constructor return the surjection given by u
TODO. If the optional keyword argument check
is set to false
, then it is not checked that u
is indeed a surjection. The second constructor is equivalent to the first with K
set to maximum(u; init = 0)
.
When a Surjection
is applied to a simplex, the result is the corresponding interval cut operation. This evaluation is linear and supports the keyword arguments coefftype
, addto
, coeff
and is_filtered
as described for the macro @linear
.
See also arity
, deg(::Surjection)
, diff(::Surjection)
, SimplicialSets.is_surjection
, LinearCombinations.linear_filter(::Surjection)
, LinearCombinations.@linear
.
Examples
Surjection operad
julia> Surjection([1, 2, 3, 1])
Surjection{3}([1, 2, 3, 1])
julia> Surjection(Int[])
Surjection{0}(Int64[])
Interval cuts
julia> using LinearCombinations: diff, deg
julia> surj = Surjection([1, 2, 1])
Surjection{2}([1, 2, 1])
julia> x = SymbolicSimplex(:x, 2)
x[0,1,2]
julia> surj(x)
-x[0,1,2]⊗x[0,1]-x[0,1,2]⊗x[1,2]+x[0,2]⊗x[0,1,2]
julia> diff(surj(x)) == diff(surj)(x) + (-1)^deg(surj) * surj(diff(x))
true
SimplicialSets.arity
— Functionarity(surj::Surjection{K}) where K -> K
Return the arity of the surjection surj
.
LinearCombinations.deg
— Methoddeg(surj::Surjection) -> Int
Return the degree of surj
, which is the number of repetitions in the sequence of values.
SimplicialSets.is_surjection
— FunctionSimplicialSets.is_surjection(k::Integer, u::AbstractVector{<:Integer}) -> Bool
Return true if u
defines a surjection of arity k
, that is, if it contains all values between 1
and k
and no other values. In this case the call Surjection{k}(u)
would return successfully.
See also Surjection
, arity
.
SimplicialSets.isdegenerate
— Methodisdegenerate(surj::Surjection) -> Bool
A surjection is degenerate if two adjacent values are equal.
Examples
julia> isdegenerate(Surjection([1, 2, 1]))
false
julia> isdegenerate(Surjection([1, 1, 2]))
true
LinearCombinations.linear_filter
— MethodLinearCombinations.linear_filter(surj::Surjection) -> Bool
Return true
if surj
is not degenerate.
See also LinearCombinations.linear_filter
.
LinearCombinations.diff
— Methoddiff(surj::Surjection{K}) where K -> Linear{Surjection{K}}
Return the differential (or boundary) of surj
in the surjection operad.
This function is linear and supports the keyword arguments coefftype
, addto
, coeff
and is_filtered
as described for the macro @linear
.
See also LinearCombinations.@linear
.
Example
julia> using LinearCombinations: diff
julia> surj = Surjection([1, 2, 1, 3, 1])
Surjection{3}([1, 2, 1, 3, 1])
julia> diff(surj)
Surjection{3}([1, 2, 1, 3])-Surjection{3}([1, 2, 3, 1])+Surjection{3}([2, 1, 3, 1])